iScience (Apr 2023)

SOCS1 regulates a subset of NFκB-target genes through direct chromatin binding and defines macrophage functional phenotypes

  • Diego R. Coelho,
  • Flavio R. Palma,
  • Veronica Paviani,
  • Katy M. LaFond,
  • Yunping Huang,
  • Dongmei Wang,
  • Brian Wray,
  • Sridhar Rao,
  • Feng Yue,
  • Marcelo G. Bonini,
  • Benjamin N. Gantner

Journal volume & issue
Vol. 26, no. 4
p. 106442

Abstract

Read online

Summary: Suppressor of cytokine signaling-1 (SOCS1) exerts control over inflammation by targeting p65 nuclear factor-κB (NF-κB) for degradation in addition to its canonical role regulating cytokine signaling. We report here that SOCS1 does not operate on all p65 targets equally, instead localizing to a select subset of pro-inflammatory genes. Promoter-specific interactions of SOCS1 and p65 determine the subset of genes activated by NF-κB during systemic inflammation, with profound consequences for cytokine responses, immune cell mobilization, and tissue injury. Nitric oxide synthase-1 (NOS1)-derived nitric oxide (NO) is required and sufficient for the displacement of SOCS1 from chromatin, permitting full inflammatory transcription. Single-cell transcriptomic analysis of NOS1-deficient animals led to detection of a regulatory macrophage subset that exerts potent suppression on inflammatory cytokine responses and tissue remodeling. These results provide the first example of a redox-sensitive, gene-specific mechanism for converting macrophages from regulating inflammation to cells licensed to promote aggressive and potentially injurious inflammation.

Keywords