Computational Visual Media (Mar 2019)

No-reference synthetic image quality assessment with convolutional neural network and local image saliency

  • Xiaochuan Wang,
  • Xiaohui Liang,
  • Bailin Yang,
  • Frederick W. B. Li

DOI
https://doi.org/10.1007/s41095-019-0131-6
Journal volume & issue
Vol. 5, no. 2
pp. 193 – 208

Abstract

Read online

Abstract Depth-image-based rendering (DIBR) is widely used in 3DTV, free-viewpoint video, and interactive 3D graphics applications. Typically, synthetic images generated by DIBR-based systems incorporate various distortions, particularly geometric distortions induced by object dis-occlusion. Ensuring the quality of synthetic images is critical to maintaining adequate system service. However, traditional 2D image quality metrics are ineffective for evaluating synthetic images as they are not sensitive to geometric distortion. In this paper, we propose a novel no-reference image quality assessment method for synthetic images based on convolutional neural networks, introducing local image saliency as prediction weights. Due to the lack of existing training data, we construct a new DIBR synthetic image dataset as part of our contribution. Experiments were conducted on both the public benchmark IRCCyN/IVC DIBR image dataset and our own dataset. Results demonstrate that our proposed metric outperforms traditional 2D image quality metrics and state-of-the-art DIBR-related metrics.

Keywords