Cell Communication and Signaling (Aug 2019)

NFAT5 mediates hypertonic stress-induced atherosclerosis via activating NLRP3 inflammasome in endothelium

  • Pingping Ma,
  • Shenfang Zha,
  • Xinkun Shen,
  • Yulan Zhao,
  • Li Li,
  • Li Yang,
  • Mingxing Lei,
  • Wanqian Liu

DOI
https://doi.org/10.1186/s12964-019-0406-7
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background How high-salt intake leads to the occurrence of many cardiovascular diseases such as atherosclerosis is a fundamental question in pathology. Here we postulated that high-salt-induced NFAT5 controls the inflammasome activation by directly regulating NLRP3, which mediates the expression of inflammatory- and adhesion-related genes in vascular endothelium, resulting in the formation of atherosclerosis. Methods Atherosclerosis-prone apolipoprotein E-deficient (ApoE−/−) mice which accumulate cholesterol ester-enriched particles in the blood due to poor lipoprotein clearance capacity were used as the atherosclerosis model in vivo. Cultured endothelial cells (ECs) and monocytes under high-salt condition were used to explore the atheroprone role of the activation of NFAT5-NLRP3 inflammasome in vascular endothelium in vitro. Bioinformatic analysis and chromatin immunoprecipitation assay were used to identify the DNA binding sites of NFAT5 on promoters of NLRP3 and IL-1β. Results We first observe that high-salt intake promotes atherosclerosis formation in the aortas of ApoE−/− mice, through inducing the expression of NFAT5, NLRP3, and IL-1β in endothelium. Overexpression of NFAT5 activates NLRP3-inflammasome and increases the secretion of IL-1β in ECs partly via ROS. Chromatin immunoprecipitation assay demonstrates that NFAT5 directly binds to the promoter regions of NLRP3 and IL-1β in endothelial cells subjected to the high-salt environment. Conclusions Our study identifies NFAT5 as a new and essential transcription factor that is required for the early activation of NLRP3-inflammasome-mediated endothelium innate immunity, contributing to the formation of atherosclerosis under hypertonic stress induction.

Keywords