Nature Communications (Sep 2020)

Risk prediction of late-onset Alzheimer’s disease implies an oligogenic architecture

  • Qian Zhang,
  • Julia Sidorenko,
  • Baptiste Couvy-Duchesne,
  • Riccardo E. Marioni,
  • Margaret J. Wright,
  • Alison M. Goate,
  • Edoardo Marcora,
  • Kuan-lin Huang,
  • Tenielle Porter,
  • Simon M. Laws,
  • Australian Imaging Biomarkers and Lifestyle (AIBL) Study,
  • Perminder S. Sachdev,
  • Karen A. Mather,
  • Nicola J. Armstrong,
  • Anbupalam Thalamuthu,
  • Henry Brodaty,
  • Loic Yengo,
  • Jian Yang,
  • Naomi R. Wray,
  • Allan F. McRae,
  • Peter M. Visscher

DOI
https://doi.org/10.1038/s41467-020-18534-1
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 11

Abstract

Read online

Despite the identification of genetic risk loci for late-onset Alzheimer’s disease (LOAD), the genetic architecture and prediction remains unclear. Here, the authors use genetic risk scores for prediction of LOAD across three datasets and show evidence suggesting oligogenic variant architecture for this disease.