Agricultural and Food Science (Sep 1952)
Observations on the effect of organic materila upon aggregation and nitrate-nitrogen content of soil
Abstract
In the experiments reported above the effect of organic material upon the aggregation of soil particles and the simultaneous immobilization of mineral nitrogen by microorganisms were studied. The relative amount of water-stable aggregates larger than 0.5 mm in diameter was considered to indicate the aggregation state of the soil samples. Probably, somewhat different results were obtained if the crumb formation had been determined by some other method, but it is not sure that these would have been more reliable. Since the incubation of soil samples were performed under aerobic conditions, and all the samples were mineral soils, it seemed justifiable to take the nitrate-nitrogen content of the soil samples to characterize the amount of mineral nitrogen in them. On the basis of the results the general conclusion may be drawn that the more favourable the conditions are for the development of an active and large microflora in the soil, the more intensively the crumb formation and the immobilization of nitrogen takes place, but also the destruction of aggregates begins the more rapidlv. This appeared to be true with regard to the indigenous fertility of soil as well as to the fertilization. Liming, however, did not improve the conditions in these experiment, probably due to the rather slight acidity of the soil samples used. Under otherwise similar conditions the larger amount of straw produced larger amount of aggregates, but the differences in the nitrate-nitrogen content of soil in the presence of various amounts of straw were neglibigle. Generally, the degree of immobilization of soil nitrogen seemed largely to depend on the properties of soil and on other environmental conditions, and nitrogen applications, theoretically enough for the needs of microorganisms that decomposed the straw, could not always prevent an intensive absorption of soil nitrogen. The crumb formation appeared to need mere energy-yielding material than the immobilization of nitrogen, or the destruction of crumbs occurred more rapidly than the nitrification of microbiologically bound nitrogen.