Nanophotonics (Nov 2019)

An electro-tunable Fabry–Perot interferometer based on dual mirror-on-mirror nanoplasmonic metamaterials

  • Sikdar Debabrata,
  • Kornyshev Alexei A.

DOI
https://doi.org/10.1515/nanoph-2019-0317
Journal volume & issue
Vol. 8, no. 12
pp. 2279 – 2290

Abstract

Read online

Mirror-on-mirror nanoplasmonic metamaterials, formed on the basis of voltage-controlled reversible self-assembly of sub-wavelength-sized metallic nanoparticles (NPs) on thin metallic film electrodes, are promising candidates for novel electro-tunable optical devices. Here, we present a new design of electro-tunable Fabry–Perot interferometers (FPIs) in which two parallel mirrors – each composed of a monolayer of NPs self-assembled on a thin metallic electrode – form an optical cavity, which is filled with an aqueous solution. The reflectivity of the cavity mirrors can be electrically adjusted, simultaneously or separately, via a small variation of the electrode potentials, which would alter the inter-NP separation in the monolayers. To investigate optical transmittance from the proposed FPI device, we develop a nine-layer-stack theoretical model, based on our effective medium theory and multi-layer Fresnel reflection scheme, which produces excellent match when verified against full-wave simulations. We show that strong plasmonic coupling among silver NPs forming a monolayer on a thin silver-film substrate makes reflectivity of each cavity mirror highly sensitive to the inter-NP separation. Such a design allows the continuous tuning of the multiple narrow and intense transmission peaks emerging from an FPI cavity via electro-tuning the inter-NP separation in situ – reaping the benefits from both inexpensive bottom-up fabrication and energy-efficient tuning.

Keywords