Applied Biosciences (Nov 2023)

Unlocking Insights into Folding, Structure, and Function of Proteins through Circular Dichroism Spectroscopy—A Short Review

  • Leonardo A. Linhares,
  • Carlos H. I. Ramos

DOI
https://doi.org/10.3390/applbiosci2040040
Journal volume & issue
Vol. 2, no. 4
pp. 639 – 655

Abstract

Read online

Circular dichroism (CD) spectroscopy has emerged as a powerful tool in the study of protein folding, structure, and function. This review explores the versatile applications of CD spectroscopy in unraveling the intricate relationship between protein conformation and biological activity. A key advantage of CD spectroscopy is its ability to analyze protein samples with minimal quantity requirements, making it an attractive technique for studying proteins that are scarce or difficult to produce. Moreover, CD spectroscopy enables the monitoring of physical and chemical environmental effects on protein structures, providing valuable insights into the dynamic behavior of proteins in different conditions. In recent years, the use of synchrotron radiation as a light source for CD measurements has gained traction, offering enhanced sensitivity and resolution. By combining the advantages of CD spectroscopy, such as minimal sample requirements and the ability to probe environmental effects, with the emerging capabilities of synchrotron radiation (SRCD), researchers have an unprecedented opportunity to explore the diverse aspects of protein behavior. This review highlights the significance of CD spectroscopy in protein research and the growing role of synchrotron radiation in advancing our understanding of protein behavior, aiming to provide novel insights and applications in various fields, including drug discovery, protein engineering, and biotechnology. A brief overview of Solid-State Circular Dichroism (SSCD) is also included.

Keywords