Journal of Oral Microbiology (Dec 2022)

Porphyromonas gingivalis lipopolysaccharide induced RIPK3/MLKL-mediated necroptosis of oral epithelial cells and the further regulation in macrophage activation

  • Fengxue Geng,
  • Junchao Liu,
  • Chengcheng Yin,
  • Shuwei Zhang,
  • Yaping Pan,
  • Hongchen Sun

DOI
https://doi.org/10.1080/20002297.2022.2041790
Journal volume & issue
Vol. 14, no. 1

Abstract

Read online

Necroptosis, a new type of regulated cell death with massive release of damage-associated molecular patterns (DAMPs), is involved in the pathogenesis of periodontitis. However, the role of necroptosis in oral epithelial cells and the following effect on macrophages activation remain unknown.Human immortalized oral epithelial cells were stimulated with Porphyromonas gingivalis lipopolysaccharide (LPS). Cell death was assessed while expressions of RIPK3/MLKL and toll-like receptors (TLRs) were evaluated. Necrosulfonamide (NSA), an inhibitor of MLKL was applied to block necroptosis. The expression of DAMPs and the epithelial connection protein were evaluated by qPCR and immunofluorescence, respectively. Immortalized human monocytes U937 were induced into the M0 or M2 subset, and influences of HIOECs-derived DAMPs on macrophage polarization as well as activation of the Mincle/SYK axis were assessed.P. gingivalis LPS could be recognized by TLR2 and regulates necroptosis of HIOECs by activating RIPK3/MLKL. NSA inhibited cell death of HIOECs, alleviated impaired epithelial connection, and inhibited expressions of DAMPs. Low dose of DAMPs derived from HIOECs promoted M2-like polarization by activating the Mincle/SYK axis, which was significantly suppressed with increased doses of DAMPs.P. gingivalis LPS destructed oral epithelial cells via RIPK3/MLKL-mediated necroptosis, which further regulated macrophage activation via DAMPs from oral epithelial cells.

Keywords