مجلة النهرين للعلوم الهندسية (Nov 2017)
Estimating Elastic Buckling Load for an Axially Loaded Column Bolted to a Simply Supported Plate using Energy Method
Abstract
This paper deals with the elastic stability of a column bolted at its mid-height to a simply supported square plate and subjected to a concentrated load, using energy method. A uniform homogeneous column is assumed to be pinned at both ends. From symmetry considerations, half of the column is modeled by making the plate acting as a torsion spring on the column at its mid-height. The column length and cross-section, plate dimensions and thickness, and the material properties for the column and the plate catch the interest of the author. The problem is solved by using energy method and ultimately, the elastic buckling load is found. The analytical elastic buckling load is compared with a numerical solution obtained from finite element method using SAP2000. The numerical results agree with the analytical solution. The finite element model is refined to catch the actual effect of the bolted plate on the elastic buckling load. It has been found that the elastic buckling load is increased due to the increase in the rotational stiffness provided from the plate.