Naučno-tehničeskij Vestnik Informacionnyh Tehnologij, Mehaniki i Optiki (Dec 2023)
Luminescent dynamics of oxygen oxidation of Viburnum opulus L. in chitosan solutions with gold nanoparticles
Abstract
The results of a study of the luminescent dynamics of combined aqueous-alcoholic solutions of extracts of red viburnum (Viburnum opulus L.) fruits with chitosan and gold nanoparticles at different oxygen concentrations were presented. The search for natural sources of photosensitizers is an urgent task. The sensitive analytical methods, in particular luminescence, with amplification of the analytical signal as a result of the generation of plasmons in nanoparticles of noble metals, have been used in this work. An additional studies under the conditions of plasmon energy generation showed a significant changes in the dynamics of optical spectra with variations in oxygen concentration in solutions. The spectral-temporal dynamics was investigated with complete oxidation of vitamin C in the studied system. The main method for recording the dynamics of interaction of Viburnum opulus L. flavonoids with oxygen molecules is the luminescent method. Luminescence spectra were measured by means of Fluorolog-3 optical system (Horiba, Japan). Methods of absorption analysis (Shimadzu spectrophotometer, Japan) were also used in the work. The nanosecond luminescence lifetimes of the extracts were measured in the multichannel photon counting mode using a picosecond NanoLED-405L nanoled by means of Fluorolog-3 spectral setup. Microsecond lifetimes were recorded when excited by a pulsed Xe lamp. For the synthesis of gold nanoparticles, the method of laser ablation of a metal plate of gold in distilled water was used. Laser ablation was performed at the LQ929 installation of Solar Laser System (Belarus). A plasmonic effect of amplification of the optical absorption density and luminescence intensity was detected. The kinetics of luminescence quenching of Viburnum opulus L. extract with chitosan under the influence of gold nanoparticles, close to diffusion, was studied. The oxygen concentration at which the flavonoids of the extract are oxidized was spectrally determined. Under the oxygen concentration changing, the dependences of changes in the luminescence intensity of the extract with chitosan at the wavelengths of registration of luminescence spectra were established. When oxygen was doped into all solutions, the spectral and kinetic features of luminescence attenuation with maxima at wavelengths of 480 and 580 nm were detected and investigated. It was established that the lifetime of luminescence at a registration wavelength of λ = 480 nm varies depending on the concentration of gold nanoparticles and the concentration of oxygen molecules and it is the nanosecond spectral region (3–4 ns). It was shown that luminescence at a wavelength of 580 nm is due to the oxidized form of quercetin which is a part of the Viburnum opulus L. flavonoids, appeared at a high oxygen concentrations. Long-lived chemiluminescence at a wavelength of 580 nm with time decay of 15 μs as a result of radical processes involving molecular oxygen and extract molecules was recorded. The spectral methods presented in this paper, as well as a method for determining of quercetin as a result of oxygen oxidation of flavonoids of red viburnum fruits, can be used in the field of biophysics, biotechnology and chemical analysis.
Keywords