Journal of Immunology Research (Jan 2022)

The Activation of the Tumor Suppressor Protein p53 by Acriflavine Leads to Mitochondrial Dysfunction and Improves the Radiosensitivity of Colon Cancer Cells

  • Caizhao Lin,
  • Xiaohua Chen,
  • Huayun Qiu,
  • Benfeng Li,
  • Min Guo

DOI
https://doi.org/10.1155/2022/1328542
Journal volume & issue
Vol. 2022

Abstract

Read online

Colon cancer ranks third worldwide, and it has a growing incidence with urbanization and industrialization. Drug resistance in colon cancer is gradually affecting the treatment. This study focused on the mechanisms by which acriflavine (ACF) enhances the radiosensitivity of colon cancer cells. First, the expression and activation levels of tumor suppressor protein p53 were shown high in normal cells and tissues in its detection, which suggests that p53 is likely to be a key factor in colon cancer. Then, the expression of p53 ended up increasing in ACF group after SW620 cells were cultured with ACF. In addition, ACF group had some other changes. The expression of mitochondrial related antiapoptotic protein Bcl-2 increased, while the expression of proapoptotic protein Bax, Bad, cytopigment C, and apoptotic inducer AIF decreased. At the same time, the ability of apoptosis was enhanced, and the ability of proliferation and invasion was decreased. This suggests that ACF can promote p53 expression and affect mitochondrial function and the radiosensitivity of SW620. The luciferase reporting experiment showed that there was a binding site between ACF and p53. Besides, when IR treatment was applied to SW620 with high p53 expression, there was an increase in the expression of Bcl-2 in SW620 and decrease in Bax, Bad, and cytopigment C in AIF. Meanwhile, the cell apoptosis became stronger, and the proliferation and invasion became weaker. The experimental results were similar to those of SW620 cells cultured with ACF, suggesting that p53 is an intermediate factor in the regulation of SW620 by ACF. Finally, in this study, cells were cultured with ACF, and p53 was knocked down at the same time. The experimental results showed that after p53 was knocked down. ACF’s ability to regulate SW620 is partially removed. This confirms the view that ACF regulates SW620 cells by regulating p53. In summary, this study found the mechanism by which ACF causes mitochondrial dysfunction and improves the radiosensitivity of colon cancer cells by activating the tumor suppressor protein p53, which may contribute to solving the drug resistance in colon cancer.