MATEC Web of Conferences (Jan 2021)

Effect of temperature mismatch on the life cycle of thermoelectric generator efficiency for waste heat recovery

  • Zi Feng Lim,
  • Joon Hoong Lim

DOI
https://doi.org/10.1051/matecconf/202133503010
Journal volume & issue
Vol. 335
p. 03010

Abstract

Read online

Global warming due to greenhouse gases that has been produced by energy generator as a byproduct has becoming a serious issue in recent decades. Thermoelectric module is an alternative method that can generate energy from heat and vice versa. The module is denominated as thermoelectric generator (TEG) when it is used to generate electricity via a process called the Seebeck effect. The use of thermoelectric generator has become more and more demanding due to the low maintenance cost and waste heat availability can be found everywhere in daily life such as car exhaust, roof tiles, and etc. The purpose of this research paper was to determine the effect of temperature mismatch on the life cycle of the thermoelectric generator efficiency using ANSYS simulation. The common used materials for the thermoelectric are bismuth telluride, lead telluride and silicon germanium. Each material has different thermal conductivity, Seebeck coefficient and electrical resistivity. The materials are paired together to form a thermocouple and the thermal gradient of the TEG is being evaluate through the simulation. Generally, the greater the temperature between the hot and cold side of the TEG, the higher the power generated. Bismuth telluride has a highest temperature difference between the hot and cold side followed by lead telluride and silicon germanium. The combination of BiTe(N) - BiTe(P) has the lowest minimum heat flux compared to the rest of the thermoelectric material combination. This proves that thermal and electrical properties and combination of thermoelectric material plays a vital role in the thermal gradient of the TEG.