Microplastics and Nanoplastics (Mar 2022)
Distribution and characteristics of microplastics in beach sand near the outlet of a major reservoir in north Mississippi, USA
Abstract
Abstract Plastic debris both affects and is affected by the beaches it accumulates on. Most studies of microplastics (MPs) in beach sand are focused on coastal beaches or beaches of large lakes near population centers. Here, we assessed MP pollution at a sandy beach near the outlet of a major flood control reservoir (Sardis Lake) in a relatively unpopulated area in north Mississippi, USA, focusing on two prominent wrack zones and areas in-between. Putative MPs were isolated by density separation and matrix digestion, and then examined using stereomicroscopy, with a subset of samples additionally analyzed by µ-FTIR. MP abundance (particles/kg ± 1 standard error (SE), n = 15) averaged of 590 ± 360, with 950 ± 100 in the lower wrack zone, 540 ± 40 in the upper wrack zone, and 270 ± 30 in areas between; these differences were statistically significant (p < 0.01). The MPs generally had similar size and shape characteristics across sites. The majority were fibers (64%), followed by fragments (23%), beads (7%) and films (6%), with a slightly greater proportion of fibers in the wrack zones compared to areas in-between. The number of MPs rose dramatically with decreasing size. Beads were only found in the < 500 µm size fraction. Clear and blue were the predominant colors for all MPs. A total of 29 different types of polymers were detected, with more than half of the particles being composed of polyethylene and polyamide, followed by poly(methyl methacrylate), polyethylene terephthalate, polycarbonate, polypropylene, and others; although this distribution varied some depending on size fraction and location. Because there are no major wastewater discharges into Sardis Lake, the source of the MPs is likely degradation of carelessly discarded plastic, as well as atmospheric fallout. Overall, we found that MP concentrations were highest in the wrack zones and influenced by rates and duration of discharge from the reservoir. Thus, like coastal beaches, wrack zones on freshwater beaches along or downstream of reservoirs accumulate both macro- and micro-plastics and are prime locations for plastic cleanup. Finally, we show that MPs made from naturally weathered LDPE plastic film are prone to fragmentation during pretreatment procedures, which may result in its overestimation.
Keywords