Environmental Research Letters (Jan 2023)

Improving the predictability of compound dry and hot extremes through complexity science

  • Ravi Kumar Guntu,
  • Ankit Agarwal

DOI
https://doi.org/10.1088/1748-9326/ad0c0c
Journal volume & issue
Vol. 18, no. 12
p. 124048

Abstract

Read online

Compound dry and hot extremes (CDHE) will have an adverse impact on socioeconomic factors during the Indian summer monsoon, and a future exacerbation is anticipated. The occurrence of CDHE is influenced by teleconnections, which play a crucial role in determining its likelihood on a seasonal scale. Despite the importance, there is a lack of studies unraveling the teleconnections of CDHE in India. Previous investigations specifically focused on the teleconnections between precipitation or temperature and climate indices. Hence, there is a need to unravel the teleconnections of CDHE. In this study, we present a framework that combines event coincidence analysis (ECA) with complexity science. ECA evaluates the synchronization between CDHE and climate indices. Subsequently, complexity science is utilized to construct a driver-CDHE network to identify the key drivers of CDHE. To evaluate the effectiveness of the proposed drivers, a logistic regression model is employed. The occurrence of CDHE exhibits distinct patterns from July to September when considering intra-seasonal variability. Our findings contribute to the identification of drivers associated with CDHE. The primary driver for Eastern, Western India and Central India is the indices in the Pacific Ocean and Atlantic Ocean, respectively, followed by the indices in the Indian Ocean. These identified drivers outperform the traditional Niño 3.4-based predictions. Overall, our results demonstrate the effectiveness of integrating ECA and complexity science to enhance the prediction of CDHE occurrences.

Keywords