Journal of Sport and Health Science (Sep 2020)

The tortuous path of lactate shuttle discovery: From cinders and boards to the lab and ICU

  • George A. Brooks

Journal volume & issue
Vol. 9, no. 5
pp. 446 – 460

Abstract

Read online

Once thought to be a waste product of oxygen limited (anaerobic) metabolism, lactate is now known to form continuously under fully oxygenated (aerobic) conditions. Lactate shuttling between producer (driver) and consumer cells fulfills at least 3 purposes; lactate is: (1) a major energy source, (2) the major gluconeogenic precursor, and (3) a signaling molecule. The Lactate Shuttle theory is applicable to diverse fields such as sports nutrition and hydration, resuscitation from acidosis and Dengue, treatment of traumatic brain injury, maintenance of glycemia, reduction of inflammation, cardiac support in heart failure and following a myocardial infarction, and to improve cognition. Yet, dysregulated lactate shuttling disrupts metabolic flexibility, and worse, supports oncogenesis. Lactate production in cancer (the Warburg effect) is involved in all main sequela for carcinogenesis: angiogenesis, immune escape, cell migration, metastasis, and self-sufficient metabolism. The history of the tortuous path of discovery in lactate metabolism and shuttling was discussed in the 2019 American College of Sports Medicine Joseph B. Wolffe Lecture in Orlando, FL.

Keywords