IEEE Transactions on Neural Systems and Rehabilitation Engineering (Jan 2024)
EMG-based Multi-User Hand Gesture Classification via Unsupervised Transfer Learning Using Unknown Calibration Gestures
Abstract
The poor generalization performance and heavy training burden of the gesture classification model contribute as two main barriers that hinder the commercialization of sEMG-based human-machine interaction (HMI) systems. To overcome these challenges, eight unsupervised transfer learning (TL) algorithms developed on the basis of convolutional neural networks (CNNs) were explored and compared on a dataset consisting of 10 gestures from 35 subjects. The highest classification accuracy obtained by CORrelation Alignment (CORAL) reaches more than 90%, which is 10% higher than the methods without using TL. In addition, the proposed model outperforms 4 common traditional classifiers (KNN, LDA, SVM, and Random Forest) using the minimal calibration data (two repeated trials for each gesture). The results also demonstrate the model has a great transfer robustness/flexibility for cross-gesture and cross-day scenarios, with an accuracy of 87.94% achieved using calibration gestures that are different with model training, and an accuracy of 84.26% achieved using calibration data collected on a different day, respectively. As the outcomes confirm, the proposed CNN TL method provides a practical solution for freeing new users from the complicated acquisition paradigm in the calibration process before using sEMG-based HMI systems.
Keywords