Mathematics and Modeling in Finance (Mar 2021)

Finite difference method for basket option pricing under Merton model

  • Parisa Karami,
  • Ali Safdari

DOI
https://doi.org/10.22054/jmmf.2021.56261.1018
Journal volume & issue
Vol. 1, no. 1
pp. 69 – 73

Abstract

Read online

In financial markets , dynamics of underlying assets are often specified via stochasticdifferential equations of jump - diffusion type . In this paper , we suppose that two financialassets evolved by correlated Brownian motion . The value of a contingent claim written on twounderlying assets under jump diffusion model is given by two - dimensional parabolic partialintegro - differential equation ( P I D E ) , which is an extension of the Black - Scholes equation witha new integral term . We show how basket option prices in the jump - diffusion models , mainlyon the Merton model , can be approximated using finite difference method . To avoid a denselinear system solution , we compute the integral term by using the Trapezoidal method . Thenumerical results show the efficiency of proposed method .Keywords: basket option pricing, jump-diffusion models, finite difference method.

Keywords