Journal of Fluid Science and Technology (Sep 2014)
Swirl flow response to transverse and axial acoustic forcing
Abstract
The present study is an experimental investigation on the effect of axial and transverse acoustic forcing on a generic swirl flow. The aim is to provide a qualitative understanding of typical swirl flow response to transverse acoustic forcing, for a better understanding of the response of swirl-stabilized flames to the same configuration of acoustic forcing. The latter is critical for the ongoing research on thermoacoustic instability in annular gas turbine combustors. A single burner test-rig with transverse extensions to facilitate transverse acoustic modes is employed in this experimental study. The swirl flow, established using a generic radial swirl generator, features vortex breakdown. Two transverse forcing configurations are studied: a) symmetric forcing which leads to a pressure antinode at the burner, and, b) antisymmetric forcing which results in a velocity antinode at the burner location. The study is based on results from planar streamwise and crosswise flow field measurements. We find that while the symmetric forcing configuration causes a flow response similar to axial forcing, antisymmetric forcing results in a helical response.
Keywords