Sensors (May 2020)
Design of Multifunctional Mesosphere-Ionosphere Sounding System and Preliminary Results
Abstract
This paper describes a novel sounding system for which the functions of the medium frequency (MF) radar and the ionosonde are integrated on the same hardware platform and antenna structure, namely the middle atmosphere-ionosphere (MAI) system. Unlike the common MF radar, MAI system adopts the pseudo-random (PRN) phase-coded modulation technology, which breaks the limitation of the traditional monopulse mode. Through the pulse compression, only a small peak power is needed to achieve the signal-to-noise ratio (SNR) requirement. The excellent anti-jamming performance is also very suitable for the ionospheric sounding. One transmitting and six receiving modes are adopted for the MF sounding. While neglecting the structure of the T/R switches, the coupling interference between the transmitter and the receiver may also be avoided. Moreover, by employing a miniaturized antenna array composed of progressive-wave antennas for the MF receiving and ionospheric sounding, the MAI system takes account of the requirements of the inversion algorithms of MF radar and the large bandwidth need for the ionospheric sounding concurrently. Such an antenna structure can also greatly simplify the system structure and minimize the difficulty of deployment. The experiments verified the availability of the system scheme and its engineering application significance. Through further analysis of the sounding data, the wind field of the mesosphere, the electron density of D layer and electron density profile from layers E to F were obtained at the identical location. The capability of MAI system can play an important role in studying the interaction and coupling mechanism between the mesosphere and ionosphere.
Keywords