Chemical Engineering Transactions (Nov 2021)

Dynamic modelling of microalgae growth under micro-aeration conditions

  • Ting Zhang,
  • Aiguo Feng,
  • Chunjiang Liu

DOI
https://doi.org/10.3303/CET2188128
Journal volume & issue
Vol. 88

Abstract

Read online

Microalgae cultivation is a critical prerequisite of biomass and biofuels production, which is conductive to the reduction of fossil energy consumptions, but there are the hydrodynamic challenges. This study proposed a dynamic modelling of microalgae growth using experimental and computational fluid dynamics (CFD) methods. Photosynthesis performances of unicellular microalgae in photobioreactors (PBRs) were investigated. In a regions-dividing airlift PBR-B, flow field and cell-cycle progression of Chlorella vulgaris were studied. It demonstrated adverse effects of the Karman Vortex Street on microalgae exponential growth. High-levels biomass productivity in flow stagnate region emerges. In a PBR-O, cell density and fluorescence intensity of Chlorella vulgaris were elevated by 2.62 % and 46.69 % in the 9th day of cultivation. Therefore, Chlorella vulgaris growth profiles were predicted using this mathematical modelling successfully. It benefits for the retrofits of commercial shear-sensitivity microalgae culture that require aeration in bio-energy industry.