Energies (Aug 2022)
Investigations of Vertical-Axis Wind-Turbine Group Synergy Using an Actuator Line Model
Abstract
The presence of power augmentation effects, or synergy, in vertical-axis wind turbines (VAWTs) offers unique opportunities for enhancing wind-farm performance. This paper uses an open-source actuator-line-method (ALM) code library for OpenFOAM (turbinesFoam) to conduct an investigation into the synergy patterns within two- and three-turbine VAWT arrays. The application of ALM greatly reduces the computational cost of simulating VAWTs by modelling turbines as momentum source terms in the Navier–Stokes equations. In conjunction with an unsteady Reynolds-Averaged Navier–Stokes (URANS) approach using the k-ω shear stress transport (SST) turbulence model, the ALM has proven capable of predicting VAWT synergy. The synergy of multi-turbine cases is characterized using the power ratio which is defined as the power coefficient of the turbine cluster normalized by that for turbines in isolated operation. The variation of the power ratio is characterized with respect to the array layout parameters, and connections are drawn with previous investigations, showing good agreement. The results from 108 two-turbine and 40 three-turbine configurations obtained using ALM are visualized and analyzed to augment the understanding of the VAWT synergy landscape, demonstrating the effectiveness of various layouts. A novel synergy superposition scheme is proposed for approximating three-turbine synergy using pairwise interactions, and it is shown to be remarkably accurate.
Keywords