Materials (Feb 2020)

The Effects of Hot-Pack Coating Materials on the Pack Rolling Process and Microstructural Characteristics during Ti-46Al-8Nb Sheet Fabrication

  • Haohong Huang,
  • Minle Liao,
  • Qikai Yu,
  • Guohuai Liu,
  • Zhaodong Wang

DOI
https://doi.org/10.3390/ma13030762
Journal volume & issue
Vol. 13, no. 3
p. 762

Abstract

Read online

The effects of the package materials on the hot workability and stress-strain characteristics of high-Nb TiAl alloy with a nominal composition of Ti-46Al-8Nb (in at.%) were systematically studied via “sandwich structure” hot compression. TiAl sheet fabrication was conducted by hot pack rolling, and the microstructural characteristics and deformation mechanisms were investigated. Based on the analysis of compressed samples and stress-strain curves, the stainless steel/TiAl structure showed better deformation compatibility with homogeneous deformation and decreasing resistance. However, severe interfacial reactions were inevitable. Meanwhile, for the titanium alloy/TiAl structure, few interfacial reactions happened, but wavy deformation and high resistance complicated the compression process. Finally, a package structure with an outer stainless steel isolation layer and inner titanium alloy was determined for the pack rolling process. A TiAl sheet with no crack defects was obtained with 80% reduction. The pack-rolled TiAl sheet took on alternate microstructure of the grain-boundary Al-enriched ribbons and elongated lamellar colonies ribbons. The grain-boundary recrystallized α2 phase, lumpy γ phase, and massive α2/γ lamellae could be observed, which led to the scatter microstructure. The microstructural characteristics mainly resulted from the solute segregations of as-cast Ti-46Al-8Nb alloys, which triggered the local flow softening and deformation incompatibility during hot pack rolling.

Keywords