Cailiao gongcheng (Oct 2017)
Microstructure and Properties of Ti-5553 Alloy for Aerospace Fasteners
Abstract
The effect of heat treatment on microstructure and mechanical properties of Ti-5553 alloy was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that when the alloy is treated in α+β phase zone, tensile strength decreases with raising solution temperature due to decreasing the content of primary α-phase and increasing the size and volume fraction of β phase. A lot of secondary α-phase precipitates from grain boundary and intragranular with β phase transformation during aging treatment. The size of secondary α-phase has significant influence on tensile strength, secondary α-phase coarsens gradually with the increase of aging temperature, resulting in the decrease of tensile strength. It is suggested that for 1240MPa aerospace fasteners the solution temperature of Ti-5553 should be under Tβ, thus adequate β phase, where a lot of secondary α phase precipitates from, is good for the required high strength. Meanwhile, a certain percentage of primary α-phase is kept for acquiring good ductility and toughness. After solution treatment at 810-820℃ for 1.5h, water quenching plus aging at 510℃ for 10h, Ti-5553 shows a better mechanical property with tensile strength 1500MPa, elongation 14.8% and reduction of cross-section area 38.6%. Lots of dimples can be found in tensile fracture after solution treatment and solution+aging treatment, which demonstrate Ti-5553 with good ductility and toughness.
Keywords