BMC Medical Genomics (Mar 2022)

Cross-ethnic analysis of common gene variants in hemostasis show lopsided representation of global populations in genetic databases

  • Abdimajid Osman,
  • Jon Jonasson

DOI
https://doi.org/10.1186/s12920-022-01220-0
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 11

Abstract

Read online

Abstract A majority of studies reporting human genetic variants were performed in populations of European ancestry whereas other global populations, and particularly many ethnolinguistic groups in other continents, are heavily underrepresented in these studies. To investigate the extent of this disproportionate representation of global populations concerning variants of significance to thrombosis and hemostasis, 845 single nucleotide polymorphisms (SNPs) in and around 34 genes associated with thrombosis and hemostasis and included in the commercial Axiom Precision Medicine Research Array (PMRA) were evaluated, using gene frequencies in 3 African (Somali and Luhya in East Africa, and Yoruba in West Africa) and 14 non-African (admixed American, East Asian, European, South Asian, and sub-groups) populations. Among the populations studied, Europeans were observed to be the best represented population by the hemostatic SNPs included in the PMRA. The European population also presented the largest number of common pharmacogenetic and pathogenic hemostatic variants reported in the ClinVar database. The number of such variants decreased the farther the genetic distance a population was from Europeans, with Yoruba and East Asians presenting the least number of clinically significant hemostatic SNPs in ClinVar while also being the two genetically most distinct populations from Europeans among the populations compared. Current study shows the lopsided representation of global populations as regards to hemostatic genetic variants listed in different commercial SNP arrays, such as the PMRA, and reported in genetic databases while also underlining the importance of inclusion of non-European ethnolinguistic populations in genomics studies designed to discover variants of significance to bleeding and thrombotic disorders.

Keywords