Saudi Journal of Biological Sciences (Apr 2024)

Coproduction of alkaline protease and xylanase from genetically modified Indonesian local Bacillus halodurans CM1 using corncob as an inducing substrate

  • I Gede Eka Perdana Putra,
  • Maria Ulfah,
  • Niknik Nurhayati,
  • Is Helianti

Journal volume & issue
Vol. 31, no. 4
p. 103947

Abstract

Read online

The production of corn generates a substantial amount of agro-industrial waste, with corncob accounting for a significant portion of this waste. In this study, we focused on utilizing corncob as a carbon source and inducer to simultaneously produce two valuable industrial enzymes, protease, and xylanase, using a recombinant strain of B. halodurans CM1. Interestingly, xylan-rich corncob not only enhanced the xylanase activity but also induced protease activity of the modified B. halodurans CM1 strain. The effect of corncob concentration on the coproduction of protease and xylanase was investigated. Corncob with 6 % concentration induced protease activity of 1020.7 U/mL and xylanase activity of 502.8 U/mL in a 7 L bioreactor under the condition of 1 vvm aeration, 250 rpm agitation, 37 °C temperature, initial pH 9.0, and 40 h incubation period. The protease produced was an alkalothermophilic enzyme whose highest activity was at pH 12 and 50 °C, and it belonged to a serine protease family. This alkalothermophilic protease’s activity to some degree was reduced by Co2+, Mg2+, Fe2+, Zn2+, and K+, but enhanced by Ca2+ and Ni2+ (at 5 mM). The protease was stable even under the presence of a 15 % concentration of acetone, DMSO, ethanol, and isopropyl alcohol. The protease activity at 30 °C was not considerably changed by the presence of detergent, indicating excellent potential as a washing detergent additive. According to these findings, corncob has the potential to be a substrate for the coproduction of protease and xylanase, which have a wide range of industrial uses.

Keywords