Frontiers in Earth Science (Feb 2022)

Object-Oriented Mapping as a Tool for the Assessment of Landslide Hazard in Higly Urbanized Areas

  • Francesco Dramis,
  • Domenico Guida,
  • Domenico Guida,
  • Mario Valiante,
  • Mario Valiante

DOI
https://doi.org/10.3389/feart.2022.834078
Journal volume & issue
Vol. 10

Abstract

Read online

The assessment and mitigation of landslide risk affecting hillslopes in highly urbanized and infrastructured environments are often problematic due to the inadequacy of the traditional approach based on landslide inventories and the absence of a shared language between the different scientific-technical operators (geologists, engineers, architects, environmentalists, economists, jurists) and recurrent understanding problems with policymakers, stakeholders, and property owners. Therefore, innovative technologies and working procedures are required to address these problems. In this context, the European INSPIRE Directive and the Italian national Catalog of Territorial Data with the related Geo-Topographic DB provide positive responses in terms of data standardization and transdisciplinary interoperability. On the other hand, the application of the object-oriented geomorphological mapping of landslides and, even more, the recently proposed Landslide Object-Oriented Model (LOOM) make it possible to develop a more thorough approach to assess the spatial and temporal relationships between landslides and affected slopes. Following the above perspective, the InterUniversity Research Center for Prevision and Prevention of Great Risks (C.U.G.RI.) produced the LOOM-based “eventory” of landslides over a sector of the Tyrrhenian coastal belt, northwest of Salerno city, in the framework of a multi-disciplinary investigation project launched by the Campania Regional Administration to assess the landslide risk. The quantitative assessment of the geomorphological expert-judgment procedures has been carried out exploiting morphometric indexes: the Topographic Position Index (TPI) for automatic slope features recognition, and the Slope-Area plots for surficial process domains. Furthermore, the application of the INSPIRE, and related Italian National Geo-Topographic DB standards allowed transdisciplinary interaction between scientists, technicians, and managers. Such proposal can support the risk management procedure, adding in the Value Judgement and Risk Tolerance Criteria simplicity and effective interoperability in trans-disciplinary frameworks.

Keywords