Current Issues in Molecular Biology (Jul 2024)
IL-17A Cytokine-Regulated Glut1 Expression in Placenta Cells
Abstract
Trophoblasts, the principal cellular component of the placenta, play an important role in nutrient and gas exchange. Previous studies have indicated that maternal immune activation (MIA) leads to an elevation in IL-17A cytokine levels in maternal serum, subsequently influencing fetal brain development during pregnancy. In this study, we aimed to elucidate the impact of the IL-17A cytokine on placental function. First, we treated JAR and JEG-3, which is a placenta cell line, with IL-17A in a concentration-dependent or time-dependent manner and observed cell morphology and viability. It was confirmed that treatment with IL-17A or a double-stranded RNA mimic (PolyI:C) had no effect on the morphology or cell viability. IL-17A treatment increased the expression of IL-17R at the mRNA and protein levels, and Poly(I:C) increased the levels of IFNγ and TNFα. Additionally, PPARγ, known as a metabolism regulator, was increased by IL-17A treatment. Also, we observed that the expression of Glut1 and Glut3 was increased by IL-17A treatment. To confirm this, we examined the expression of transporters in the placental tissue of the MIA rodent model, and we observed that mRNA expression of glut1 and glut3 was significantly increased. However, the expression of Gltu1 and Glut3 was observed to be significantly inhibited in the brains of MIA-induced offspring. This study suggests that IL-17A increases signaling through IL-17R in the placenta and fetal brain tissue; however, there is a mechanism for regulating the expression of glucose transporters by increased IL-17A in the placenta.
Keywords