Acque Sotterranee (Sep 2023)
Verification of experimental saltwater intrusion interface in unconfined coastal aquifers using numerical and analytical solutions
Abstract
Saltwater intrusion (SWI) is a widespread environmental problem that poses a threat to coastal aquifers. To address this issue, this research employs both numerical and experimental methods to study saltwater intrusion under the impact of sea level rise and varying freshwater boundary conditions in two homogeneous aquifers. The study compares transient numerical groundwater heads and salt concentrations to experimental results under receding-front and advancing front conditions. In the low permeability aquifer, the root mean square error is 0.33 cm and the R2 is greater than 0.9817. Similarly, in the high permeability aquifer, the root mean square error is 0.92 cm and the R2 is greater than 0.9335. The study also compares the results of ten experimental tests for steady-state saltwater intrusion wedge and toe length with seven different analytical solutions. The experimental results are then compared to these analytical solutions to find the most suitable equation. The Rumer and Harleman equation shows good agreement with experimental saltwater intrusion wedge, while the Anderson equation is a good fit for saltwater intrusion toe length. Overall, this research provides valuable insights into saltwater intrusion in coastal aquifers, and the findings can be used to inform policies and management strategies to mitigate the negative impacts of saltwater intrusion. The investigation shed light on how inland water head and Sea Level Rise (SLR) affect SWI behavior.
Keywords