Nanoscale Research Letters (Apr 2017)

Shape and Size-Dependent Magnetic Properties of Fe3O4 Nanoparticles Synthesized Using Piperidine

  • Ashwani Kumar Singh,
  • O. N. Srivastava,
  • Kedar Singh

DOI
https://doi.org/10.1186/s11671-017-2039-3
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 7

Abstract

Read online

Abstract In this article, we proposed a facile one-step synthesis of Fe3O4 nanoparticles of different shapes and sizes by co-precipitation of FeCl2 with piperidine. A careful investigation of TEM micrographs shows that the shape and size of nanoparticles can be tuned by varying the molarity of piperidine. XRD patterns match the standard phase of the spinal structure of Fe3O4 which confirms the formation of Fe3O4 nanoparticles. Transmission electron microscopy reveals that molar concentration of FeCl2 solution plays a significant role in determining the shape and size of Fe3O4 nanoparticles. Changes in the shape and sizes of Fe3O4 nanoparticles which are influenced by the molar concentration of FeCl2 can easily be explained with the help of surface free energy minimization principle. Further, to study the magnetic behavior of synthesized Fe3O4 nanoparticles, magnetization vs. magnetic field (M-H) and magnetization vs. temperature (M-T) measurements were carried out by using Physical Property Measurement System (PPMS). These results show systematic changes in various magnetic parameters like remanent magnetization (Mr), saturation magnetization (Ms), coercivity (Hc), and blocking temperature (T B) with shapes and sizes of Fe3O4. These variations of magnetic properties of different shaped Fe3O4 nanoparticles can be explained with surface effect and finite size effect.

Keywords