Mathematics (Mar 2021)

On the Evolution of Compressible and Incompressible Viscous Fluids with a Sharp Interface

  • Takayuki Kubo,
  • Yoshihiro Shibata

DOI
https://doi.org/10.3390/math9060621
Journal volume & issue
Vol. 9, no. 6
p. 621

Abstract

Read online

In this paper, we consider some two phase problems of compressible and incompressible viscous fluids’ flow without surface tension under the assumption that the initial domain is a uniform Wq2−1/q domain in RN (N≥2). We prove the local in the time unique existence theorem for our problem in the Lp in time and Lq in space framework with 2p∞ and Nq∞ under our assumption. In our proof, we first transform an unknown time-dependent domain into the initial domain by using the Lagrangian transformation. Secondly, we solve the problem by the contraction mapping theorem with the maximal Lp-Lq regularity of the generalized Stokes operator for the compressible and incompressible viscous fluids’ flow with the free boundary condition. The key step of our proof is to prove the existence of an R-bounded solution operator to resolve the corresponding linearized problem. The Weis operator-valued Fourier multiplier theorem with R-boundedness implies the generation of a continuous analytic semigroup and the maximal Lp-Lq regularity theorem.

Keywords