Inorganics (Sep 2023)
Synthesis of a New Dinuclear Cu(I) Complex with a Triazine Ligand and Diphenylphosphine Methane: X-ray Structure, Optical Properties, DFT Calculations, and Application in DSSCs
Abstract
A new copper(I) complex, [Cu2(L)2dppm](PF6)2 (1) [L = 3-(2-Pyridyl)-5,6-diphenyl-1,2,4-triazine and dppm: Bis(diphenylphosphino)methane], was prepared and characterized by IR, 1H-NMR, 31P-NMR spectroscopy, elemental and thermogravimetric analysis, and a single-crystal X-ray diffraction technique. Complex 1 is a dinuclear compound, showing that L and dppm act as tridentate and bidentate chelating ligands, respectively. The two Cu(I) atoms exhibit a distorted tetrahedral coordination sphere embedded in N3P environments. The supramolecular interactions in the solid-state structure are characterized by C−H···N, C−H···F, C-H···π and π···π intermolecular interactions, which we studied using Hirshfeld surface and fingerprint tools. Additionally, the complex was studied experimentally using UV–Vis spectroscopy and cyclic voltammetry, and theoretical studies with time-dependent density functional theory (TD-DFT) were performed. Moreover, the optical and electrochemical properties were studied, focusing on the band gap. Compound 1 was used as a co-sensitizer in a dye-sensitized solar cell, showing a good photovoltaic performance of 2.03% (Jsc = 5.095 mAcm−2, Voc = 757 mV, and FF = 52.7%) under 100 mW cm−2 (AM 1.5G) solar irradiation, which is similar to that of DSSC, which was only sensitized by N719 (2.2%) under the same condition.
Keywords