Journal of Marine Science and Engineering (Dec 2023)
Paleoenvironmental Evolution and Organic Matter Accumulation in a Hydrocarbon-Bearing Depression in the East China Sea
Abstract
Investigating the paleoenvironment and characteristics of source rocks in sedimentary basins is crucial for understanding organic matter accumulation and guiding hydrocarbon exploration. The Lishui Sag, a significant hydrocarbon-bearing depression in the East China Sea, has experienced extensive marine transgression and increasing salinity in the Paleocene, but the changes in accumulation factors of organic matter during this evolution process remain unclear. Through a comprehensive analysis of total organic carbon (TOC), major and trace elements, and biomarker data, this study investigates the characteristics of source rocks from two lithostratigraphic units, namely the Paleocene Yueguifeng and Lingfeng formations, to gain deep insight into the effects of paleoenvironment on organic matter accumulation and hydrocarbon distribution. Our results indicate that the Lishui Sag transitioned from a closed lake to an open-marine environment in the Paleocene, with a shift from warm-humid to arid climate conditions. The biomarker distribution suggests a change in the origin of organic matter, with a higher input of terrestrial organic matter in the Lingfeng Formation. During the early stage, the lacustrine source rocks in the lower Yueguifeng Formation were formed in a relatively humid and anoxic environment within brackish water, resulting in a substantial influx of terrestrial and lacustrine algae organic matter. In contrast, in the late stage, the marine source rocks in the overlying Lingfeng Formation were developed in an arid and oxidizing environment. The lacustrine source rocks in the Yueguifeng Formation were notably more favorable to developing good-quality source rocks. Compared with the other regions, the western and northeastern parts of the study area have greater hydrocarbon generation potential due to the wider distribution of high maturity and organic-rich source rocks, with higher terrestrial and algal organic matter input. Moreover, considering the practical circumstances in the exploration, the northeastern part of the Lishui Sag is recommended as the next exploration target zone.
Keywords