Nature Communications (May 2021)
Origin of the quasi-quantized Hall effect in ZrTe5
- S. Galeski,
- T. Ehmcke,
- R. Wawrzyńczak,
- P. M. Lozano,
- K. Cho,
- A. Sharma,
- S. Das,
- F. Küster,
- P. Sessi,
- M. Brando,
- R. Küchler,
- A. Markou,
- M. König,
- P. Swekis,
- C. Felser,
- Y. Sassa,
- Q. Li,
- G. Gu,
- M. V. Zimmermann,
- O. Ivashko,
- D. I. Gorbunov,
- S. Zherlitsyn,
- T. Förster,
- S. S. P. Parkin,
- J. Wosnitza,
- T. Meng,
- J. Gooth
Affiliations
- S. Galeski
- Max Planck Institute for Chemical Physics of Solids
- T. Ehmcke
- Institute for Theoretical Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden
- R. Wawrzyńczak
- Max Planck Institute for Chemical Physics of Solids
- P. M. Lozano
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory
- K. Cho
- Max Planck Institute of Microstructure Physics
- A. Sharma
- Max Planck Institute of Microstructure Physics
- S. Das
- Max Planck Institute of Microstructure Physics
- F. Küster
- Max Planck Institute of Microstructure Physics
- P. Sessi
- Max Planck Institute of Microstructure Physics
- M. Brando
- Max Planck Institute for Chemical Physics of Solids
- R. Küchler
- Max Planck Institute for Chemical Physics of Solids
- A. Markou
- Max Planck Institute for Chemical Physics of Solids
- M. König
- Max Planck Institute for Chemical Physics of Solids
- P. Swekis
- Max Planck Institute for Chemical Physics of Solids
- C. Felser
- Max Planck Institute for Chemical Physics of Solids
- Y. Sassa
- Department of Physics, Chalmers University of Technology
- Q. Li
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory
- G. Gu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory
- M. V. Zimmermann
- Deutsches Elektronen-Synchrotron DESY
- O. Ivashko
- Deutsches Elektronen-Synchrotron DESY
- D. I. Gorbunov
- Hochfeld-Magnetlabor Dresden (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat,, Helmholtz-Zentrum Dresden-Rossendorf
- S. Zherlitsyn
- Hochfeld-Magnetlabor Dresden (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat,, Helmholtz-Zentrum Dresden-Rossendorf
- T. Förster
- Hochfeld-Magnetlabor Dresden (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat,, Helmholtz-Zentrum Dresden-Rossendorf
- S. S. P. Parkin
- Max Planck Institute of Microstructure Physics
- J. Wosnitza
- Hochfeld-Magnetlabor Dresden (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat,, Helmholtz-Zentrum Dresden-Rossendorf
- T. Meng
- Institute for Theoretical Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden
- J. Gooth
- Max Planck Institute for Chemical Physics of Solids
- DOI
- https://doi.org/10.1038/s41467-021-23435-y
- Journal volume & issue
-
Vol. 12,
no. 1
pp. 1 – 8
Abstract
A 3D quantum Hall effect has been reported in Dirac semimetal ZrTe5 due to a magnetic-field-driven Fermi surface instability. Here, the authors show evidence of quasi-quantized Hall response without Fermi surface instability, but they argue that it is due to the interplay of the intrinsic properties of ZrTe5 electronic structure and Dirac semi-metallic character.