Oil & Gas Science and Technology (Nov 2009)

Advances in Electrochemical Models for Predicting the Cycling Performance of Traction Batteries: Experimental Study on Ni-MH and Simulation Développement de modèles électrochimiques de batteries de traction pour la prédiction de performances : étude expérimentale de batteries NiMH et simulations

  • Bernard J.,
  • Sciarretta A.,
  • Touzani Y.,
  • Sauvant-Moynot V.

DOI
https://doi.org/10.2516/ogst/2009060
Journal volume & issue
Vol. 65, no. 1
pp. 55 – 66

Abstract

Read online

Rigorous electrochemical models to simulate the cycling performance of batteries have been successfully developed and reported in the literature. They constitute a very promising approach for State-of-Charge (SoC) estimation based on the physics of the cell with regards to other methods since SoC is an internal parameter of these physical models. However, the computational time needed to solve electrochemical battery models for online applications requires to develop a simplified physics-based battery model. In this work, our goal is to present and validate an advanced 0D-electrochemical model of a Ni-MH cell, as an example. This lumped-parameter model will be used to design an extended Kalman filter to predict the SoC of a Ni-MH pack. It is presented, followed by an extensive experimental study conducted on Ni-MH cells to better understand the mechanisms of physico-chemical phenomena occurring at both electrodes and support the model development. The last part of the paper focuses on the evaluation of the model with regards to experimental results obtained on Ni-MH sealed cells but also on the related commercial HEV battery pack. Des modèles électrochimiques fins permettant de simuler le comportement de batteries ont été développés avec succès et reportés dans la littérature. Ils constituent une alternative aux méthodes classiques pour estimer l’état de charge (SoC pour State of Charge) des batteries, cette variable étant ici un paramètre interne du modèle physique. Cependant, pour les applications embarquées, il est nécessaire de développer des modèles simplifiés sur la base de ces modèles physiques afin de diminuer le temps de calcul nécessaire à la résolution des équations. Ici, nous présenterons à titre d’exemple un modèle électrochimique 0D avancé d’un accumulateur NiMH et sa validation. Ce modèle à paramètres concentrés sera utilisé pour réaliser un filtre de Kalman qui permettra la prédiction de l’état de charge d’un pack complet. Une étude expérimentale d’accumulateurs NiMH permettra de mieux comprendre les mécanismes physico-chimiques ayant lieu à chaque électrode et ainsi d’alimenter le modèle physique en informations. La dernière partie de cet article sera consacrée à la validation du modèle par comparaison à des données expérimentales obtenues sur cellule individuelle mais également sur un pack batterie NiMH commercial complet.