Journal of Pathology Informatics (Dec 2024)
Quantitative digital pathology enables automated and quantitative assessment of inflammatory activity in patients with autoimmune hepatitis
Abstract
Background: Chronic liver disease diagnoses depend on liver biopsy histopathological assessment. However, due to the limitations associated with biopsy, there is growing interest in the use of quantitative digital pathology to support pathologists. We evaluated the performance of computational algorithms in the assessment of hepatic inflammation in an autoimmune hepatitis in which inflammation is a major component. Methods: Whole-slide digital image analysis was used to quantitatively characterize the area of tissue covered by inflammation [Inflammation Density (ID)] and number of inflammatory foci per unit area [Focal Density (FD)] on tissue obtained from 50 patients with autoimmune hepatitis undergoing routine liver biopsy. Correlations between digital pathology outputs and traditional categorical histology scores, biochemical, and imaging markers were assessed. The ability of ID and FD to stratify between low-moderate (both portal and lobular inflammation ≤1) and moderate-severe disease activity was estimated using the area under the receiver operating characteristic curve (AUC). Results: ID and FD scores increased significantly and linearly with both portal and lobular inflammation grading. Both ID and FD correlated moderately-to-strongly and significantly with histology (portal and lobular inflammation; 0.36≤R≤0.69) and biochemical markers (ALT, AST, GGT, IgG, and gamma globulins; 0.43≤R≤0.57). ID (AUC: 0.85) and FD (AUC: 0.79) had good performance for stratifying between low-moderate and moderate-severe inflammation. Conclusion: Quantitative assessment of liver biopsy using quantitative digital pathology metrics correlates well with traditional pathology scores and key biochemical markers. Whole-slide quantification of disease can support stratification and identification of patients with more advanced inflammatory disease activity.