Frontiers in Marine Science (Jun 2019)

WebCAT: Piloting the Development of a Web Camera Coastal Observing Network for Diverse Applications

  • Gregory Dusek,
  • Debra Hernandez,
  • Mark Willis,
  • Jenna A. Brown,
  • Joseph W. Long,
  • Dwayne E. Porter,
  • Tiffany C. Vance

DOI
https://doi.org/10.3389/fmars.2019.00353
Journal volume & issue
Vol. 6

Abstract

Read online

Web cameras are transforming coastal environmental monitoring. Improvements in camera technology and image processing capabilities, paired with decreases in cost, enable widespread use of camera systems by researchers, managers and first responders for a growing range of environmental monitoring applications. Applications are related to transportation and commerce, preparedness, risk reduction and response, and stewardship of coastal resources. While web cameras are seemingly ubiquitous, operators often follow unique installation procedures and collect, store, and process imagery data in various ways. These inconsistencies significantly limit the ability for imagery data to be shared and utilized across research and operational disciplines. Similar to the early days of other remote sensing networks like High Frequency Radar, the benefits and downstream application of coastal imagery data can be greatly enhanced through centralized data access and standardization of data collection, analysis and dissemination. The NOAA National Ocean Service Web Camera Applications Testbed (WebCAT) was launched in 2017 in partnership with SECOORA, as a public-private partnership to address this coastal ocean observing standardization need. WebCAT is a pilot project relying on the private sector expertise of Surfline, Inc., to install and operate several web cameras capable of meeting the short-term needs of diverse users including NOAA, USGS, state health agencies, academia and others. The project aims to determine operational imagery collection, storage, processing, access, and archival requirements that will foster collaboration across research and operational user communities. Seven web cameras have been installed at six locations along the southeast United States coast (from Florida to North Carolina) for purposes including: counting animals on the beach and migrating right whales, identifying rip currents, validating wave runup models, and understanding human use of natural resources. Here we present a review of the state of coastal imagery data and an overview of the WebCAT project. Goals of an upcoming community workshop will also be presented along with our vision for how WebCAT can motivate a future sustained operational web camera network.

Keywords