Ingenio (Jan 2024)

Uso de Redes Neuronales Artificiales (RNA) para la Predicción de la Resistencia a la Compresión y Módulo de Elasticidad del Hormigón

  • Alejandro Machado Salazar,
  • Enlil Santiago Ganchala Padilla,
  • Jonathan Mauricio Piñarcaja Rivadeneira

DOI
https://doi.org/10.29166/ingenio.v7i1.5492
Journal volume & issue
Vol. 7, no. 1

Abstract

Read online

La presente investigación indica el diseño de un modelo de inteligencia artificial en base a redes neuronales artificiales (RNA) que permita predecir la Resistencia a la Compresión (f’c) y Módulo de elasticidad (Ec) del hormigón. La metodología se realizó en tres etapas: La Etapa Delta donde se conformó una base de datos constituida por resultados de diseños de hormigones (caracterización de agregados, dosificaciones, resistencia a la compresión y módulo de elasticidad) elaborados con cemento tipo GU sin aditivos y agregados procedentes de las canteras del Distrito Metropolitano de Quito, obtenidos de trabajos de titulación de diversas universidades del país y de ensayos comerciales realizados por el Laboratorio de Ensayo de Materiales y Modelos de la Facultad de Ingeniería y Ciencias Aplicadas. En la siguiente Etapa Theta se realizó el diseño de la RNA utilizando el software Matlab y la herramienta Neural Fitting (nftool) para el entrenamiento, validación y testeo de la RNA a través de indicadores de desempeño como el coeficiente de correlación de Pearson (R) en la etapa de evaluación y el coeficiente de determinación (R2) para medir la eficiencia de la RNA; finalmente en la etapa Gamma se comprobó los resultados pronosticados de la RNA con el (f’c) y (Ec) real del hormigón obtenidos a través de ensayos realizados a 20 cilindros de hormigón, diseñados para resistencias de 21, 24 y 28 MPa utilizando agregados de la cantera de Pifo y cemento Tipo GU. Estableciendo que la RNA predice satisfactoriamente la resistencia a la compresión y módulo de elasticidad del hormigón obteniendo un valor de R2 para el (f’c) igual a 95.12% y para el (Ec) de 92.20% entre los resultados pronosticados con los resultados reales para mezclas de 21, 24 y 28 MPa; validando su uso para la predicción de estas propiedades en el hormigón.

Keywords