Shock and Vibration (Jan 2020)

Multitask Convolutional Neural Network for Rolling Element Bearing Fault Identification

  • Mingxing Jia,
  • Yuemei Xu,
  • Maoyi Hong,
  • Xiyu Hu

DOI
https://doi.org/10.1155/2020/1971945
Journal volume & issue
Vol. 2020

Abstract

Read online

As one of the most vital parts of rotating equipment, it is an essential work to diagnose rolling bearing failure. The traditional signal processing-based rolling bearing fault diagnosis algorithms rely on artificial feature extraction and expert knowledge. The working condition of rolling bearings is complex and changeable, so the traditional algorithm is slightly lacking adaptability. The damage degree also plays a crucial role in fault monitoring. Different damage degrees may take different remedial measures, but traditional fault-diagnosis algorithms roughly divide the damage degree into several categories, which do not correspond to the continuous value of the damage degree. To solve the abovementioned two problems, this paper proposes a fault-diagnosis algorithm based on “end-to-end” one-dimensional convolutional neural network. The one-dimensional convolution kernel and the pooling layer are directly applied to the original time domain signal. Feature extraction and classifier are merged together, and the extracted features are used to judge the damage degree at the same time. Then, the generalization ability of the model is studied under a variety of conditions. Experiments show that the algorithm can achieve more than 99% accuracy and can accurately give the damage degree of the bearing. It has good performance under different speeds, different types of motors, and different sampling frequencies, and so it has good generalization ability.