Nanomaterials (Jan 2022)

Nickel-Based Selenides with a Fractal Structure as an Excellent Bifunctional Electrocatalyst for Water Splitting

  • Jingxuan He,
  • Ting Qian,
  • Chao Cai,
  • Xia Xiang,
  • Sean Li,
  • Xiaotao Zu

DOI
https://doi.org/10.3390/nano12020281
Journal volume & issue
Vol. 12, no. 2
p. 281

Abstract

Read online

Nickel-based selenides are believed to be promising non-precious metal electrocatalysts, and have been widely used for both oxygen evolution reactions (OER) and hydrogen evolution reactions (HER). Here, we control the aging time to prepare NixSey with different fractal structures as a bifunctional catalyst. An obtained sample with an aging time of 80 min shows outstanding electrocatalytic performance for hydrogen evolution reactions (HER) with an overpotential of 225 mV (η@10 mA/cm2) and for oxygen evolution reactions (OER) with an overpotential of 309 mV (η@50 mA/cm2). Moreover, to further improve catalytic activity, we doped Fe in NixSey to obtain the ternary nickel-based selenide, Fe0.2Ni0.8Se (FNSs). The HER activity of FNS increased two-fold at 10 mA/cm2, and the overpotential of OER decreased to 255 mV at 50 mA/cm2. The synthetic strategy and research results of this work have a certain reference value for other low-cost and high-efficiency transition metal catalysts for electrocatalytic water splitting.

Keywords