Antibiotics (Nov 2021)

DksA Modulates Antimicrobial Susceptibility of <i>Acinetobacter baumannii</i>

  • Nayeong Kim,
  • Joo-Hee Son,
  • Kyeongmin Kim,
  • Hyo-Jeong Kim,
  • Minsang Shin,
  • Je-Chul Lee

DOI
https://doi.org/10.3390/antibiotics10121472
Journal volume & issue
Vol. 10, no. 12
p. 1472

Abstract

Read online

The stringent response regulators, (p)ppGpp and DksA, modulate various genes involved in physiological processes, virulence, and antimicrobial resistance in pathogenic bacteria. This study investigated the role of DksA in the antimicrobial susceptibility of Acinetobacter baumannii. The ∆dksA mutant (KM0248D) of A. baumannii ATCC 17978 and its complemented strain (KM0248C) were used, in addition to the ∆dksA mutant strain (NY0298D) of clinical 1656-2 strain. The microdilution assay was used to determine the minimum inhibitory concentrations (MICs) of antimicrobial agents. Quantitative real-time PCR was performed to analyze the expression of genes associated with efflux pumps. The KM0248D strain exhibited an increase of MICs to quinolones and tetracyclines, whereas KM0248D and NY0298D strains exhibited a decrease of MICs to aminoglycosides. The expression of genes associated with efflux pumps, including adeB, adeI/J, abeM, and/or tetA, was upregulated in both ∆dksA mutant strains. The deletion of dksA altered bacterial morphology in the clinical 1656-2 strain. In conclusion, DksA modulates the antimicrobial susceptibility of A. baumannii. The ∆dksA mutant strains of A. baumannii upregulate efflux pump gene expression, whereas (p)ppGpp-deficient mutants downregulate efflux pump gene expression. (p)ppGpp and DksA conduct opposite roles in the antimicrobial susceptibility of A. baumannii via efflux pump gene regulation.

Keywords