Biomedicine & Pharmacotherapy (Aug 2024)

Dual therapy with phospholipase and metalloproteinase inhibitors from Sinonatrix annularis alleviated acute kidney and liver injury caused by multiple snake venoms

  • Kepu Fu,
  • Jianqi Zhao,
  • Lipeng Zhong,
  • Haiyan Xu,
  • Xinhui Yu,
  • Xiaowen Bi,
  • Chunhong Huang

Journal volume & issue
Vol. 177
p. 116967

Abstract

Read online

Snakebite envenomation often induces acute kidney injury (AKI) and acute liver injury (ALI), leading to augmented injuries and poor rehabilitation. Phospholipase A2 (PLA2) and metalloproteinase (SVMP) present in venom are responsible for the envenomation-associated events. In this study, mice envenomed with Deinagkistrodon acutus, Naja atra, or Agkistrodon halys pallas venom exhibited typical AKI and ALI symptoms, including significantly increased plasma levels of myoglobin, free hemoglobin, uric acid, aspartate aminotransferase, and alanine aminotransferase and upregulated expression of kidney NGAL and KIM-1. These effects were significantly inhibited when the mice were pretreated with natural inhibitors of PLA2 and SVMP isolated from Sinonatrix annularis (SaPLIγ and SaMPI). The inhibitors protected the physiological structural integrity of the renal tubules and glomeruli, alleviating inflammatory infiltration and diffuse hemorrhage in the liver. Furthermore, the dual therapy alleviated oxidative stress and apoptosis in the kidneys and liver by mitigating mitochondrial damage, thereby effectively reducing the lethal effect of snake venom in the inhibitor-treated mouse model. This study showed that dual therapy with inhibitors of metalloproteinase and phospholipase can effectively prevent ALI and AKI caused by snake bites. Our findings suggest that intrinsic inhibitors present in snakes are prospective therapeutic agents for multi-organ injuries caused by snake envenoming.

Keywords