Journal of Neuroinflammation (Apr 2017)

Mu-opioid receptor and delta-opioid receptor differentially regulate microglial inflammatory response to control proopiomelanocortin neuronal apoptosis in the hypothalamus: effects of neonatal alcohol

  • Pallavi Shrivastava,
  • Miguel A. Cabrera,
  • Lucy G. Chastain,
  • Nadka I. Boyadjieva,
  • Shaima Jabbar,
  • Tina Franklin,
  • Dipak K. Sarkar

DOI
https://doi.org/10.1186/s12974-017-0844-3
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 19

Abstract

Read online

Abstract Background Opioid receptors are known to control neurotransmission of various peptidergic neurons, but their potential role in regulation of microglia and neuronal cell communications is unknown. We investigated the role of mu-opioid receptors (MOR) and delta-opioid receptors (DOR) on microglia in the regulation of apoptosis in proopiomelanocortin (POMC) neurons induced by neonatal ethanol in the hypothalamus. Methods Neonatal rat pups were fed a milk formula containing ethanol or control diets between postnatal days 2–6. Some of the alcohol-fed rats additionally received pretreatment of a microglia activation blocker minocycline. Two hours after the last feeding, some of the pups were sacrificed and processed for histochemical detection of microglial cell functions or confocal microscopy for detection of cellular physical interaction or used for gene and protein expression analysis. The rest of the pups were dissected for microglia separation by differential gradient centrifugation and characterization by measuring production of various activation markers and cytokines. In addition, primary cultures of microglial cells were prepared using hypothalamic tissues of neonatal rats and used for determination of cytokine production/secretion and apoptotic activity of neurons. Results In the hypothalamus, neonatal alcohol feeding elevated cytokine receptor levels, increased the number of microglial cells with amoeboid-type circularity, enhanced POMC and microglial cell physical interaction, and decreased POMC cell numbers. Minocycline reversed these cellular effects of alcohol. Alcohol feeding also increased levels of microglia MOR protein and pro-inflammatory signaling molecules in the hypothalamus, and MOR receptor antagonist naltrexone prevented these effects of alcohol. In primary cultures of hypothalamic microglia, both MOR agonist [D-Ala 2, N-MePhe 4, Gly-ol]-enkephalin (DAMGO) and ethanol increased microglial cellular levels and secretion of pro-inflammatory cell signaling proteins. However, a DOR agonist [D-Pen2,5]enkephalin (DPDPE) increased microglial secretion of anti-inflammatory cytokines and suppressed ethanol’s ability to increase microglial production of inflammatory signaling proteins and secretion of pro-inflammatory cytokines. In addition, MOR-activated inflammation promoted while DOR-suppressed inflammation inhibited the apoptotic effect of ethanol on POMC neurons. Conclusions These results suggest that ethanol’s neurotoxic action on POMC neurons results from MOR-activated neuroinflammatory signaling. Additionally, these results identify a protective effect of a DOR agonist against the pro-inflammatory and neurotoxic action of ethanol.

Keywords