Iranian Journal of Medical Sciences (Mar 2019)

Induction of Apoptosis by a Combination of 2-Deoxyglucose and Metformin in Esophageal Squamous Cell Carcinoma by Targeting Cancer Cell Metabolism

  • Abbas Shafaee,
  • Jalil Pirayesh Islamian,
  • Davoud Zarei,
  • Mohsen Mohammadi,
  • Kazem Nejati-Koshki,
  • Alireza Farajollahi,
  • Seyed Mahmoud Reza Aghamiri,
  • Mohammad Rahmati Yamchi,
  • Behzad Baradaran,
  • Mohammad Asghari Jafarabadi

DOI
https://doi.org/10.30476/ijms.2019.44522
Journal volume & issue
Vol. 44, no. 2
pp. 99 – 107

Abstract

Read online

Background: Both mitochondrial dysfunction and aerobic glycolysis are signs of growing aggressive cancer. If altered metabolism of cancer cell is intended, using the glycolysis inhibitor (2-deoxyglucose (2DG)) would be a viable therapeutic method. The AMP-activated protein kinase (AMPK), as a metabolic sensor, could be activated with metformin and it can also launch a p53-dependent metabolic checkpoint and might inhibit cancer cell growth. Methods: After treatment with 5 mM metformin and/or 500 µM 2DG, the TE1, TE8, and TE11 cellular viability and apoptosis were assessed by MTT, TUNEL, and ELISA methods. The changes in p53 and Bcl-2 genes expression levels were examined using real-time PCR method. Data were analyzed by Kruskal-Wallis test using the SPSS 17.0 software. Results: Metformin and 2DG, alone and in combination, induced apoptosis in the cell lines. Real-time PCR revealed that metformin induced apoptosis in TE8 and TE11 cells by activating p53, down-regulating Bcl-2 expression. The induced apoptosis by 2DG raised by metformin and the combination modulated the expression of Bcl-2 protein in all cell lines and it was more effective in TE11 cell line. Conclusion: Metformin induced apoptosis in ESCC by down-regulating Bcl-2 expression, and up-regulating p53 and induced apoptosis increased by 2-deoxy-d-glucose. Thus, the combination therapy is an effective therapeutic strategy for esophageal squamous cell carcinoma.

Keywords