Frontiers in Genetics (Jan 2023)
Forensic efficiencies of individual identification, kinship testing and ancestral inference in three Yunnan groups based on a self-developed multiple DIP panel
Abstract
Deletion/insertion polymorphism (DIP), as a short insertion/deletion sequence polymorphic genetic marker, has attracted the attention of forensic genetic scientist due to its lack of stutter, short amplicon and abundant ancestral information. In this study, based on a self-developed 43 autosomal deletion/insertion polymorphism (A-DIP) loci panel which could meet the forensic application purposes of individual identification, kinship testing and ancestral inference to some extent, we evaluated the forensic efficiencies of the above three forensic objectives in Chinese Yi, Hani and Miao groups of Yunnan province. The cumulative match probability (CPM) and combined probability of exclusion (CPE) of these three groups were 1.11433E-18, 8.24299E-19, 4.21721E-18; 0.999610217, 0.999629285 and 0.999582084, respectively. Average 96.65% full sibling pairs could be identified from unrelated individual pairs (as likelihood ratios > 1) using this DIP panel, whereas the average false positive rate was 3.69% in three target Yunnan groups. With the biogeographical ancestor prediction models constructed by extreme gradient boosting (XGBoost) and support vector machine (SVM) algorithms, 0.8239 (95% CI 0.7984, 0.8474) of the unrelated individuals could be correctly divided according to the continental origins based on the 43 A-DIPs which were large frequency distribution differentiations among different continental populations. The present results of principal component analysis (PCA), multidimensional scaling (MDS), neighbor joining (NJ) and maximum likelihood (ML) phylogenetic trees and STRUCTURE analyses indicated that these three Yunnan groups had relatively close genetic distances with East Asian populations.
Keywords