Egyptian Journal of Biological Pest Control (Apr 2021)

Biocontrol potential of bacteriophage ɸsp1 against bacterial wilt-causing Ralstonia solanacearum in Solanaceae crops

  • Pramila Devi Umrao,
  • Vineet Kumar,
  • Shilpa Deshpande Kaistha

DOI
https://doi.org/10.1186/s41938-021-00408-3
Journal volume & issue
Vol. 31, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background Bacteriophages are effective biocontrol strategy as well as ecofriendly remedy for the emerging antibiotic and chemical resistance in bacterial phytopathogens such as bacterial wilt-causing Ralstonia solanacearum. One of the major challenges in the use of bacteriophage therapy for agricultural phytopathogens is maintaining their viability even during variations in pH, temperature, ultraviolet irradiation, and desiccation during field application for sustainable agriculture. Results In this study, the isolation and characterization of phage ɸsp1 for its efficacy against wilt-causing R. solanacearum performed on Solanum lycopersicum (tomato) seedlings and Solanum tuberosum (potato) tuber assay are reported. Bacteriophage was found to be viable and stable at a wide pH range (3.0–9.0) and at temperatures up to 55 °C. Phage ɸsp1 required ~15 min for adsorption and completed its life cycle in 25–30 min by host cell lysis with a burst size of ~250–300. Phage ɸsp1 eradicated 94.73% preformed R. solanacearum biofilm and inhibited biofilm formation by 73.68% as determined by the static crystal violet microtiter biofilm assay. Transmission electron microscope revealed the phage ɸsp1 to be approximately 208±15 nm in size, comprising of icosahedral head (100 ±15 nm) and tail, as belonging to Myoviridae family. Plant bioassays showed 81.39 and 87.75% reduction in pathogen count using phages ɸsp1 in potato tuber and tomato seedlings, respectively. Reversal in disease symptoms was 100% in phage-treated tuber and tomato plant (pot assay) compared to only pathogen-treated controls. Conclusion Isolated bacteriophage ɸsp1 was found to be highly host specific, effective in biofilm prevention, and capable of inhibiting bacterial wilt at low multiplicity of infection (1.0 MOI) in tomato as well as potato tuber bioassays. Phages ɸsp1 were environmentally stable as they survive at variable pH and temperature. Bacteriophage ɸsp1 shows a promise for development into a biocontrol formulation for the prevention of R. solanacearum bacterial wilt disease.

Keywords