Data in Brief (Feb 2024)
A dataset of the quality of soybean harvested by mechanization for deep-learning-based monitoring and analysis
Abstract
Deep learning and machine vision technology are widely applied to detect the quality of mechanized soybean harvesting. A clean dataset is the foundation for constructing an online detection learning model for the quality of mechanized harvested soybeans. In pursuit of this objective, we established an image dataset for mechanized harvesting of soybeans. The photos were taken on October 9, 2018, at a soybean experimental field of Liangfeng Grain and Cotton Planting Professional Cooperative in Guanyi District, Liangshan, Shandong, China. The dataset contains 40 soybean images of different qualities. By scaling, rotating, flipping, filtering, and adding noise to enhance the data, we expanded the dataset to 800 frames. The dataset consists of three folders, which store images, label maps, and record files for partitioning the dataset into training, validation, and testing sets. In the initial stages, the author devised an online detection model for soybean crushing rate and impurity rate based on machine vision, and research outcomes affirm the efficacy of this dataset. The dataset can help researchers construct a quality prediction model for mechanized harvested soybeans using deep learning techniques.