Malaria Journal (Mar 2009)
High sensitivity detection of <it>Plasmodium </it>species reveals positive correlations between infections of different species, shifts in age distribution and reduced local variation in Papua New Guinea
Abstract
Abstract Background When diagnosed by standard light microscopy (LM), malaria prevalence can vary significantly between sites, even at local scale, and mixed species infections are consistently less common than expect in areas co-endemic for Plasmodium falciparum, Plasmodium vivax and Plasmodium malariae. The development of a high-throughput molecular species diagnostic assay now enables routine PCR-based surveillance of malaria infections in large field and intervention studies, and improves resolution of species distribution within and between communities. Methods This study reports differences in the prevalence of infections with all four human malarial species and of mixed infections as diagnosed by LM and post-PCR ligase detection reaction – fluorescent microsphere (LDR-FMA) assay in 15 villages in the central Sepik area of Papua New Guinea. Results Significantly higher rates of infection by P. falciparum, P. vivax, P. malariae and Plasmodium ovale were observed in LDR-FMA compared to LM diagnosis (p P. malariae (3.9% vs 13.4%) and P. ovale (0.0% vs 4.8%). In contrast to LM diagnosis, which suggested a significant deficit of mixed species infections, a significant excess of mixed infections over expectation was detected by LDR-FMA (p P. falciparum (LM: 7–9 yrs 47.5%, LDR-FMA: 10–19 yrs 74.2%) and P. vivax (LM: 4–6 yrs 24.2%, LDR-FMA: 7–9 yrs 50.9%) but not P. malariae infections (10–19 yrs, LM: 7.7% LDR-FMA: 21.6%). Significant geographical variation in prevalence was found for all species (except for LM-diagnosed P. falciparum), with the extent of this variation greater in LDR-FMA than LM diagnosed infections (overall, 84.4% vs. 37.6%). Insecticide-treated bednet (ITN) coverage was also the dominant factor linked to geographical differences in Plasmodium species infection prevalence explaining between 60.6% – 74.5% of this variation for LDR-FMA and 81.8% – 90.0% for LM (except P. falciparum), respectively. Conclusion The present study demonstrates that application of molecular diagnosis reveals patterns of malaria risk that are significantly different from those obtained by standard LM. Results provide insight relevant to design of malaria control and eradication strategies.