Advances in Nonlinear Analysis (Apr 2023)

High energy solutions of general Kirchhoff type equations without the Ambrosetti-Rabinowitz type condition

  • Zhang Jian,
  • Liu Huize,
  • Zuo Jiabin

DOI
https://doi.org/10.1515/anona-2022-0311
Journal volume & issue
Vol. 12, no. 1
pp. 18 – 34

Abstract

Read online

In this article, we study the following general Kirchhoff type equation: −M∫R3∣∇u∣2dxΔu+u=a(x)f(u)inR3,-M\left(\mathop{\int }\limits_{{{\mathbb{R}}}^{3}}| \nabla u{| }^{2}{\rm{d}}x\right)\Delta u+u=a\left(x)f\left(u)\hspace{1em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{3}, where infR+M>0{\inf }_{{{\mathbb{R}}}^{+}}M\gt 0 and ff is a superlinear subcritical term. By using the Pohozǎev manifold, we obtain the existence of high energy solutions of the aforementioned equation without the well-known Ambrosetti-Rabinowitz type condition.

Keywords