Nanomaterials (Dec 2021)

Physicochemical and Photocatalytic Properties under Visible Light of ZnO-Bentonite/Chitosan Hybrid-Biocompositefor Water Remediation

  • Imane Aadnan,
  • Omar Zegaoui,
  • Abderrahim El Mragui,
  • Joaquim Carlos Gomes Esteves da Silva

DOI
https://doi.org/10.3390/nano12010102
Journal volume & issue
Vol. 12, no. 1
p. 102

Abstract

Read online

In this investigation, a hybrid-biocomposite “ZnO-Bentonite/Chitosan” was synthesized using inexpensive and environmentally friendly materials (Bentonitechitosan) and (ZnO). It was used as a photocatalyst for water remediation. The structural, optical, thermal, and morphological properties of the synthesized hybrid-biocomposite were investigated using XRD, FTIR spectroscopy, UV-vis diffuse reflectance spectroscopy, TGA, XPS, and SEM-EDS. The thermal measurements showed that the decomposition of CS was postponed progressively by adding PB and ZnO, and the thermal stability of the synthesized hybrid-biocomposite was improved. The characterization results highlighted strong interactions between the C–O, C=O, -NH2, and OH groups of chitosan and the alumina-silica sheets of bentonite on the one side, and between the functional groups of chitosan (-NH2, OH) and ZnO on the other side. The photocatalytic efficiency of the prepared hybrid-biocomposite was assessed in the presence of Methyl Orange (MO). The experiments carried out in the dark showed that the MO removal increased in the presence of Zn-PB/CS hybrid-biocomposite (86.1%) by comparison with PB (75.8%) and CS (65.4%) materials. The photocatalytic experiments carried out under visible light showed that the MO removal increased 268 times in the presence of Zn-PB/CS by comparison withZnO.The holes trapping experiments indicated that they are the main oxidative active species involved in the MO degradation under both UV-A and visible light irradiations.

Keywords