Arabian Journal of Chemistry (Aug 2022)

An innovative SiO2-pyrazole nanocomposite for Zn(II) and Cr(III) ions effective adsorption and anti-sulfate-reducing bacteria from the produced oilfield water

  • Rasha A El-Saeed,
  • R. Hosny,
  • Mahmoud F. Mubarak,
  • Moaz M. Abdou,
  • Kamel R. Shoueir

Journal volume & issue
Vol. 15, no. 8
p. 103949

Abstract

Read online

Novel SiO2-pyrazole (SiO2-PYZ) nanocomposite was introduced for the elimination of Zn(II) and Cr(III) from oil reservoir water. Characterization analysis of prepared SiO2-PYZ nanocomposite was investigated using SEM, FTIR, TGA, XRD, TEM, and BET. Studying the effects and optimization of the parameters such as retention time, pH, initial Cr(III) and Zn(II) ions concentrations, adsorbent dosage, and temperature were examined. For kinetics investigation, the pseudo-second-order (PSO) model matches the adsorption process effectively under different operating conditions. After applying two other isotherm models (Langmuir and Freundlich), the experimental data was adequately equipped with Langmuir, R2 = 1. The thermodynamic results pointed that the adsorption of Zn(II) and Cr(III) ions was spontaneous, endothermic, and physisorption reaction. At pH 12, the influence of more than one ion, such as Ca(II) and Na(I), was checked, and the results revealed that this conjugate substance was highly selective to Cr(III). After washing with water in multiple cycles, the adsorbed material was regenerated with 0.1 M HCl and subsequently reused without deterioration in its case cavities. Interestingly, SiO2-PYZ was highly effective against sulfate-reducing bacteria (SRB) in the petroleum field.

Keywords